We present a method for finding the stability regions within a set of genuine signatures and for selecting the most suitable one to be used for online signature verification. The definition of stability region builds upon motor learning and adaptation in handwriting generation, while their selection exploits both their ability to model signing habits and their effectiveness in capturing distinctive features. The stability regions represent the core of a signature verification system whose performance is evaluated on a standard benchmark.

Exploiting Stability Regions for Online Signature Verification

PARZIALE, ANTONIO;MARCELLI, Angelo
2014-01-01

Abstract

We present a method for finding the stability regions within a set of genuine signatures and for selecting the most suitable one to be used for online signature verification. The definition of stability region builds upon motor learning and adaptation in handwriting generation, while their selection exploits both their ability to model signing habits and their effectiveness in capturing distinctive features. The stability regions represent the core of a signature verification system whose performance is evaluated on a standard benchmark.
2014
9789814579629
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4562257
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 8
social impact