Nonparametric estimators are particularly affected by the curse of dimensionality. An interesting method has been proposed recently, the RODEO, which uses the nonparametric local linear estimator for high dimensional regression, avoiding the curse of dimensionality when the model is sparse. This method can be used for variable selection as well, but it is blind to linear dependencies. For this reason, it is suggested to use the RODEO on the residuals of a LASSO. In this paper we propose an alternative solution, based on the adaptation of the well-known asymptotic results for the local linear estimator. The proposal can be used to complete the RODEO, avoiding the necessity of filtering the data through the LASSO. Some theoretical properties and the results of a simulation study are shown in this paper.

Local Polynomials for Variable Selection

GIORDANO, Francesco;PARRELLA, Maria Lucia
2014

Abstract

Nonparametric estimators are particularly affected by the curse of dimensionality. An interesting method has been proposed recently, the RODEO, which uses the nonparametric local linear estimator for high dimensional regression, avoiding the curse of dimensionality when the model is sparse. This method can be used for variable selection as well, but it is blind to linear dependencies. For this reason, it is suggested to use the RODEO on the residuals of a LASSO. In this paper we propose an alternative solution, based on the adaptation of the well-known asymptotic results for the local linear estimator. The proposal can be used to complete the RODEO, avoiding the necessity of filtering the data through the LASSO. Some theoretical properties and the results of a simulation study are shown in this paper.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4599658
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact