Today’s several algorithms are currently managed by the control units in passenger cars to deliver higher comfort level to vehicle driver and passengers. One route to smoother longitudinal dynamics as well as deliver higher safety is provided by the engine torque limiters and traction control. The drawback of such filters is that they bring in time delays which may give to the driver the feeling that the vehicle engine does not respond in a prompt way to her/his demand [1]. On the other hand, recent highly-supercharged engines suffer for inadequate engine torque rise when setting the vehicle in motion from stationary with fast accelerator request: this behaviour is related to fueling response, fuel-air ratio control, soot emissions regulation, etc. The goal of this paper is to design a feedback controller based on multiple Model Predictive Controller (mMPC) to manage the clutch opening/closing operations in a dry-clutch Automated Manual Transmission architecture. The controller aims at ensuring a comfortable vehicle launch by assuring a reduced engagement time and by maintaining the wheel slip at a desired value to have the maximum traction force. The simulations have been carried out by considering the engine dynamics as well as the delay ensuing engine torque build-up together to an imposed wheel slip in fast launch manoeuvre to prove the effectiveness of the proposed clutch control strategy and encourage the development of real-time routines for the testing in real-time environment.

MODEL PREDICTIVE CONTROLLER FOR THE CLUTCH ENGAGEMENT TO LIMIT THE TRACTION LAG DUE TO THE ENGINE TORQUE BUILD-UP

PISATURO, MARIO;SENATORE, ADOLFO;D'AGOSTINO, Vincenzo
2015

Abstract

Today’s several algorithms are currently managed by the control units in passenger cars to deliver higher comfort level to vehicle driver and passengers. One route to smoother longitudinal dynamics as well as deliver higher safety is provided by the engine torque limiters and traction control. The drawback of such filters is that they bring in time delays which may give to the driver the feeling that the vehicle engine does not respond in a prompt way to her/his demand [1]. On the other hand, recent highly-supercharged engines suffer for inadequate engine torque rise when setting the vehicle in motion from stationary with fast accelerator request: this behaviour is related to fueling response, fuel-air ratio control, soot emissions regulation, etc. The goal of this paper is to design a feedback controller based on multiple Model Predictive Controller (mMPC) to manage the clutch opening/closing operations in a dry-clutch Automated Manual Transmission architecture. The controller aims at ensuring a comfortable vehicle launch by assuring a reduced engagement time and by maintaining the wheel slip at a desired value to have the maximum traction force. The simulations have been carried out by considering the engine dynamics as well as the delay ensuing engine torque build-up together to an imposed wheel slip in fast launch manoeuvre to prove the effectiveness of the proposed clutch control strategy and encourage the development of real-time routines for the testing in real-time environment.
978-1-4799-7016-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4646045
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact