Reinforced concrete structures in service may be affected by aging, which may include changes in strength and stiffness beyond the baseline conditions which are assumed in structural design, in particular when the concrete is exposed to an aggressive environment. For reinforced concrete structures, due to the uncertainties in material and geometrical properties, in the magnitude and distribution of the loads, in the physical parameters which define the deterioration process, the structural safety should realistically be considered time-variant. This paper provides a computational probabilistic approach to predict the time-evolution of the mechanical and geometrical properties of a reinforced concrete structural element (i.e., bridge pile) subjected to corrosion-induced deterioration, due to diffusive attack of chlorides, in order to evaluate its service life or, complementarily, residual service life. Adopting appropriate degradation models of the material properties, concrete and reinforcing steel, as well as assuming appropriate probability density functions related to mechanical and deterioration parameters, the proposed model is based on Monte Carlo simulations in order to evaluate time-variant axial force-bending moment resistance domains, with the aim to estimate the time-variant reliability index. Finally, an application to estimate the expected lifetime of a deteriorating reinforced concrete bridge pile is described.

TIME-VARIANT STRUCTURAL RELIABILITY OF R.C. STRUCTURES AFFECTED BY CHLORIDE-INDUCED DETERIORATION

PALAZZO, Bruno;CASTALDO, PAOLO;
2015

Abstract

Reinforced concrete structures in service may be affected by aging, which may include changes in strength and stiffness beyond the baseline conditions which are assumed in structural design, in particular when the concrete is exposed to an aggressive environment. For reinforced concrete structures, due to the uncertainties in material and geometrical properties, in the magnitude and distribution of the loads, in the physical parameters which define the deterioration process, the structural safety should realistically be considered time-variant. This paper provides a computational probabilistic approach to predict the time-evolution of the mechanical and geometrical properties of a reinforced concrete structural element (i.e., bridge pile) subjected to corrosion-induced deterioration, due to diffusive attack of chlorides, in order to evaluate its service life or, complementarily, residual service life. Adopting appropriate degradation models of the material properties, concrete and reinforcing steel, as well as assuming appropriate probability density functions related to mechanical and deterioration parameters, the proposed model is based on Monte Carlo simulations in order to evaluate time-variant axial force-bending moment resistance domains, with the aim to estimate the time-variant reliability index. Finally, an application to estimate the expected lifetime of a deteriorating reinforced concrete bridge pile is described.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4650367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact