The use of three-phase voltage inverters (DC to AC converters) is frequently met in the electric power system, such as in the connection of photovoltaics with the rest of the grid. The paper proposes a nonlinear feedback control method for three-phase inverters, which is based on differential flatness theory and a new nonlinear filtering method under the name Derivative-free nonlinear Kalman Filter. First, it is shown that the inverter’s dynamic model is a differentially flat one. This means that all its state variables and the control inputs can be written as functions of a single algebraic variable which is the flat output. By exploiting differential flatness properties it is shown that the inverter’s model can be transformed to the linear canonical (Brunovsky’s) form. For the latter description, the design of a state feedback controller becomes possible, e.g. using pole placement methods. Moreover, to estimate the nonmeasurable state variables of the linearized equivalent model of the inverter, the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized inverter’smodel and of an inverse transformation that is based on differential flatness theory, which enables to compute estimates of the state variables of the initial nonlinear system. Furthermore, by redesigning the aforementioned filter as a disturbance observer it becomes also possible to estimate disturbance terms that affect the inverter and subsequently to compensate for them. The performance and disturbance rejection capability of the proposed nonlinear feedback control scheme is evaluated through simulation experiments.

Nonlinear Control of Three-Phase Inverter Systems Using the Derivative-Free Nonlinear Kalman Filter

SIANO, PIERLUIGI;
2015

Abstract

The use of three-phase voltage inverters (DC to AC converters) is frequently met in the electric power system, such as in the connection of photovoltaics with the rest of the grid. The paper proposes a nonlinear feedback control method for three-phase inverters, which is based on differential flatness theory and a new nonlinear filtering method under the name Derivative-free nonlinear Kalman Filter. First, it is shown that the inverter’s dynamic model is a differentially flat one. This means that all its state variables and the control inputs can be written as functions of a single algebraic variable which is the flat output. By exploiting differential flatness properties it is shown that the inverter’s model can be transformed to the linear canonical (Brunovsky’s) form. For the latter description, the design of a state feedback controller becomes possible, e.g. using pole placement methods. Moreover, to estimate the nonmeasurable state variables of the linearized equivalent model of the inverter, the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized inverter’smodel and of an inverse transformation that is based on differential flatness theory, which enables to compute estimates of the state variables of the initial nonlinear system. Furthermore, by redesigning the aforementioned filter as a disturbance observer it becomes also possible to estimate disturbance terms that affect the inverter and subsequently to compensate for them. The performance and disturbance rejection capability of the proposed nonlinear feedback control scheme is evaluated through simulation experiments.
978-1-84919-982-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4656556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact