We aim at identifying a minimal set of conditions under which algorithms with good approximation guarantees are truthful without money. In line with recent literature, we wish to express such a set via verification assumptions, i.e., kind of agents' misbehavior that can be made impossible by the designer. We initiate this research endeavour for the paradigmatic problem in approximate mechanism design without money, facility location. It is known how truthfulness imposes (even severe) losses and how certain notions of verification are unhelpful in this setting; one is thus left powerless to solve this problem satisfactorily in presence of selfish agents. We here address this issue and characterize the minimal set of verification assumptions needed for the truthfulness of optimal algorithms, for both social cost and max cost objective functions. En route, we give a host of novel conceptual and technical contributions ranging from topological notions of verification to a lower bounding technique for truthful mechanisms that connects methods to test truthfulness (i.e., cycle monotonicity) with approximation guarantee.

What to Verify for Optimal Truthful Mechanisms without Money

FERRAIOLI, DIODATO;VENTRE, CARMINE
2016

Abstract

We aim at identifying a minimal set of conditions under which algorithms with good approximation guarantees are truthful without money. In line with recent literature, we wish to express such a set via verification assumptions, i.e., kind of agents' misbehavior that can be made impossible by the designer. We initiate this research endeavour for the paradigmatic problem in approximate mechanism design without money, facility location. It is known how truthfulness imposes (even severe) losses and how certain notions of verification are unhelpful in this setting; one is thus left powerless to solve this problem satisfactorily in presence of selfish agents. We here address this issue and characterize the minimal set of verification assumptions needed for the truthfulness of optimal algorithms, for both social cost and max cost objective functions. En route, we give a host of novel conceptual and technical contributions ranging from topological notions of verification to a lower bounding technique for truthful mechanisms that connects methods to test truthfulness (i.e., cycle monotonicity) with approximation guarantee.
978-1-4503-4239-1
File in questo prodotto:
File Dimensione Formato  
aamas2016_sample_iris2.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: DRM non definito
Dimensione 586.56 kB
Formato Adobe PDF
586.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4667735
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact