The round complexity of commitment schemes secure against man-in-the-middle attacks has been the focus of extensive research for about 25 years. The recent breakthrough of Goyal et al. [22] showed that 3 rounds are sufficient for (one-left, one-right) non-malleable commitments. This result matches a lower bound of [41]. The state of affairs leaves still open the intriguing problem of constructing 3-round concurrent non-malleable commitment schemes. In this paper we solve the above open problem by showing how to transform any 3-round (one-left one-right) non-malleable commitment scheme (with some extractability property) in a 3-round concurrent nonmalleable commitment scheme. Our transform makes use of complexity leveraging and when instantiated with the construction of [22] gives a 3-round concurrent non-malleable commitment scheme from one-way permutations secure w.r.t. subexponential-time adversaries. We also show a 3-round arguments of knowledge and a 3-round identification scheme secure against concurrent man-in-the-middle attacks.

Concurrent non-malleable commitments (and more) in 3 rounds

CIAMPI, MICHELE;SINISCALCHI, LUISA;VISCONTI, Ivan
2016

Abstract

The round complexity of commitment schemes secure against man-in-the-middle attacks has been the focus of extensive research for about 25 years. The recent breakthrough of Goyal et al. [22] showed that 3 rounds are sufficient for (one-left, one-right) non-malleable commitments. This result matches a lower bound of [41]. The state of affairs leaves still open the intriguing problem of constructing 3-round concurrent non-malleable commitment schemes. In this paper we solve the above open problem by showing how to transform any 3-round (one-left one-right) non-malleable commitment scheme (with some extractability property) in a 3-round concurrent nonmalleable commitment scheme. Our transform makes use of complexity leveraging and when instantiated with the construction of [22] gives a 3-round concurrent non-malleable commitment scheme from one-way permutations secure w.r.t. subexponential-time adversaries. We also show a 3-round arguments of knowledge and a 3-round identification scheme secure against concurrent man-in-the-middle attacks.
File in questo prodotto:
File Dimensione Formato  
main.pdf

embargo fino al 21/07/2017

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 403.26 kB
Formato Adobe PDF
403.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4669623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 27
social impact