The Optimally Tuned Robust Improper Maximum Likelihood Estima- tor (OTRIMLE) for robust model-based clustering is introduced. It is based on a ML-type procedure for a pseudo model in which clusters are represented by a finite mixture of Gaussian distributions, while noise is represented with the addition of an improper constant density (ICD). The OTRIMLE requires constraints on the underly- ing covariance matrices that prevent spurious solutions. These constraints may have strong impact on the final clustering and alternative algorithms are provided with the OTRIMLE software.

Robust model-based clustering with covariance matrix constraints

CORETTO, Pietro;
2015

Abstract

The Optimally Tuned Robust Improper Maximum Likelihood Estima- tor (OTRIMLE) for robust model-based clustering is introduced. It is based on a ML-type procedure for a pseudo model in which clusters are represented by a finite mixture of Gaussian distributions, while noise is represented with the addition of an improper constant density (ICD). The OTRIMLE requires constraints on the underly- ing covariance matrices that prevent spurious solutions. These constraints may have strong impact on the final clustering and alternative algorithms are provided with the OTRIMLE software.
2015
9788884679499
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4682619
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact