Masonry buildings realized in the last centuries are a significant part of the international architectural heritage. The optimal design of the retrofit interventions of these buildings represents a priority and requires the evaluation of their mechanical behavior under static and dynamic loads. Several mechanical models capable to study masonry structures are available in literature and are based on Heyman limit analysis approach. These models cannot be easily adopted within FEM codes. Within this context, a Genetic Algorithm is implemented within a refinement adaptive finite element model to computational mesh of shell surfaces. The proposed model researches a ‘safe’ thrust surface of a masonry vault within a design domain, by minimizing the average value of the principal tensile stresses carried by the unreinforced portion of the material (fitness function). The design domain coincides with either the vault volume, in the case of unreinforced masonry members, or an external region of the vault in correspondence with the reinforced portions, in the case of the vault strengthened with either Fiber Reinforced Polymer or Fabric Reinforced Cementitious composites. The proposed methodology allows evaluating the structural safety of masonry vault and defining an optimal design of reinforcement pattern.
ADVANCED NUMERICAL MODELS FOR THE ANALYSIS OF UNREINFORCED AND STRENGTHENED MASONRY VAULTS
BERARDI, Valentino Paolo;DE PIANO, MARIELLA;TEODOSIO, GIUSEPPE;PENNA, ROSA;FEO, Luciano
2017-01-01
Abstract
Masonry buildings realized in the last centuries are a significant part of the international architectural heritage. The optimal design of the retrofit interventions of these buildings represents a priority and requires the evaluation of their mechanical behavior under static and dynamic loads. Several mechanical models capable to study masonry structures are available in literature and are based on Heyman limit analysis approach. These models cannot be easily adopted within FEM codes. Within this context, a Genetic Algorithm is implemented within a refinement adaptive finite element model to computational mesh of shell surfaces. The proposed model researches a ‘safe’ thrust surface of a masonry vault within a design domain, by minimizing the average value of the principal tensile stresses carried by the unreinforced portion of the material (fitness function). The design domain coincides with either the vault volume, in the case of unreinforced masonry members, or an external region of the vault in correspondence with the reinforced portions, in the case of the vault strengthened with either Fiber Reinforced Polymer or Fabric Reinforced Cementitious composites. The proposed methodology allows evaluating the structural safety of masonry vault and defining an optimal design of reinforcement pattern.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.