Approximate functional dependencies are used in many emerging application domains, such as the identification of data inconsistencies or patterns of semantically related data, query rewriting, and so forth. They can approximate the canonical definition of functional dependency (fd) by relaxing on the data comparison (i.e., by considering data similarity rather than equality), on the extent (i.e., by admitting the possibility that the dependency holds on a subset of data), or both. Approximate fds are difficult to be identified at design time like it happens with fds. In this paper, we propose a genetic algorithm to discover approximate fds from data. An empirical evaluation demonstrates the effectiveness of the algorithm.

A genetic algorithm to discover relaxed functional dependencies from data

Caruccio, Loredana;Deufemia, Vincenzo;Polese, Giuseppe
2017-01-01

Abstract

Approximate functional dependencies are used in many emerging application domains, such as the identification of data inconsistencies or patterns of semantically related data, query rewriting, and so forth. They can approximate the canonical definition of functional dependency (fd) by relaxing on the data comparison (i.e., by considering data similarity rather than equality), on the extent (i.e., by admitting the possibility that the dependency holds on a subset of data), or both. Approximate fds are difficult to be identified at design time like it happens with fds. In this paper, we propose a genetic algorithm to discover approximate fds from data. An empirical evaluation demonstrates the effectiveness of the algorithm.
2017
978-1-5108-4725-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4704662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact