Many nonstationary time series exhibit changes in the trend and seasonality structure, that may be modeled by splitting the time axis into different regimes. We propose multi-regime models where, inside each regime, the trend is linear and seasonality is explained by a Periodic Autoregressivemodel. In addition, for achieving parsimony, we allow season grouping, i.e. seasons may consist of one, two, or more consecutive observations. Identification is obtained by means of a Genetic Algorithm that minimizes an identification criterion.
Generalized periodic autoregressive models for trend and seasonality varying time series
Cucina D.
;
2018
Abstract
Many nonstationary time series exhibit changes in the trend and seasonality structure, that may be modeled by splitting the time axis into different regimes. We propose multi-regime models where, inside each regime, the trend is linear and seasonality is explained by a Periodic Autoregressivemodel. In addition, for achieving parsimony, we allow season grouping, i.e. seasons may consist of one, two, or more consecutive observations. Identification is obtained by means of a Genetic Algorithm that minimizes an identification criterion.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.