A major challenge in the development of a successful tumor vaccination is to break immune tolerance and to sensitize efficiently the immune system toward relevant tumor antigens, thus enabling T-cell-mediated antitumor responses in vivo. Dendritic cell (DC)-based immunotherapy shows the advantage to induce an adaptive immune response against the tumor, with the potential to generate a long-lasting immunological memory able to prevent further relapses and hopefully metastasis. Recently different preclinical studies highlighted the golden opportunity to exploit the features of immunogenic cell death (ICD) to generate ex vivo a highly immunogenic tumor cell lysate as potent antigen formulation for improved DC-based vaccine against aggressive cancers. This chapter focuses on the methods to obtain tumor lysates from cells undergoing ICD to be used for DC pulsing and to test the functionality of the generated DCs for antitumor vaccine development.
A Novel Dendritic Cell-Based Vaccination Protocol to Stimulate Immunosurveillance of Aggressive Cancers
NIGRO, ANNUNZIATA;Casolaro, Vincenzo;DAL COL, JESSICA
2019-01-01
Abstract
A major challenge in the development of a successful tumor vaccination is to break immune tolerance and to sensitize efficiently the immune system toward relevant tumor antigens, thus enabling T-cell-mediated antitumor responses in vivo. Dendritic cell (DC)-based immunotherapy shows the advantage to induce an adaptive immune response against the tumor, with the potential to generate a long-lasting immunological memory able to prevent further relapses and hopefully metastasis. Recently different preclinical studies highlighted the golden opportunity to exploit the features of immunogenic cell death (ICD) to generate ex vivo a highly immunogenic tumor cell lysate as potent antigen formulation for improved DC-based vaccine against aggressive cancers. This chapter focuses on the methods to obtain tumor lysates from cells undergoing ICD to be used for DC pulsing and to test the functionality of the generated DCs for antitumor vaccine development.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.