In this paper we present an algorithm for finding an accurate estimate of the contour of masses in mammograms. We assume that a rough estimate of the region containing the mass is known: in particular it is available the location of an area inside the mass (core) and a closed curve beyond which the mass does not extend. The proposed method employs a boosting-based classifier trained on the core and on a background region beyond the external contour, so that it provides an accurate estimate of the mass contour by classifying unlabeled pixels between the core and the external contour. The proposed approach is useful not only for automatic localization of mass contour, but also as a powerful tool during annotation of mammograms, given that an user provides interactively an estimate for the core and the external contour of the mass. The approach has been verified on a set of mammograms showing very encouraging results.

A Boosting-Based Approach to Refine the Segmentation of Masses in Mammography

Francesco Tortorella
Methodology
2013-01-01

Abstract

In this paper we present an algorithm for finding an accurate estimate of the contour of masses in mammograms. We assume that a rough estimate of the region containing the mass is known: in particular it is available the location of an area inside the mass (core) and a closed curve beyond which the mass does not extend. The proposed method employs a boosting-based classifier trained on the core and on a background region beyond the external contour, so that it provides an accurate estimate of the mass contour by classifying unlabeled pixels between the core and the external contour. The proposed approach is useful not only for automatic localization of mass contour, but also as a powerful tool during annotation of mammograms, given that an user provides interactively an estimate for the core and the external contour of the mass. The approach has been verified on a set of mammograms showing very encouraging results.
2013
9783642411830
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4721703
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact