Recently, Convolutional Neural Networks (CNNs) have been successfully used to detect microcalcifications in mammograms. An important step in CNN-based detection is image preprocessing that, in raw mammograms, is usually employed to equalize or remove the intensity-dependent quantum noise. In this work, we show how removing the noise can significantly improve the microcalcification detection performance of a CNN. To this end, we describe the quantum noise with a uniform square-root model. Under this assumption, the generalized Anscombe transformation is applied to the raw mammograms by estimating the noise characteristics from the image at hand. In the Anscombe domain, noise is filtered through an adaptive Wiener filter. The denoised images are recovered with an appropriate inverse transformation and are then used to train the CNN-based detector. Experiments were performed on 1,066 mammograms acquired with GE Senographe systems. MC detection performance of a CNN on noise-free mammograms was statistically significantly higher than on unprocessed mammograms. Results were also superior in comparison with a nonparametric noise-equalizing transformation previously proposed for digital mammograms

Mammogram denoising to improve the calcification detection performance of convolutional nets

Tortorella, Francesco
;
2018-01-01

Abstract

Recently, Convolutional Neural Networks (CNNs) have been successfully used to detect microcalcifications in mammograms. An important step in CNN-based detection is image preprocessing that, in raw mammograms, is usually employed to equalize or remove the intensity-dependent quantum noise. In this work, we show how removing the noise can significantly improve the microcalcification detection performance of a CNN. To this end, we describe the quantum noise with a uniform square-root model. Under this assumption, the generalized Anscombe transformation is applied to the raw mammograms by estimating the noise characteristics from the image at hand. In the Anscombe domain, noise is filtered through an adaptive Wiener filter. The denoised images are recovered with an appropriate inverse transformation and are then used to train the CNN-based detector. Experiments were performed on 1,066 mammograms acquired with GE Senographe systems. MC detection performance of a CNN on noise-free mammograms was statistically significantly higher than on unprocessed mammograms. Results were also superior in comparison with a nonparametric noise-equalizing transformation previously proposed for digital mammograms
2018
9781510620070
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4721739
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact