The disposal of polymeric waste is increasingly becoming an issue of international concern. The use of biodegradable polymers is a possible strategy to face most of the problems related to the disposal of the durable (non-biodegradable) polymers. Among biodegradable polymers, polylactic acid (PLA), obtained from renewable sources, is a very attractive one, due to its relatively good processability, biocompatibility, interesting physical properties. Hydrolysis is the major depolymerization mechanism and the rate-controlling step of PLA biodegradation in compost. The propensity to degradation in the presence of water significantly limits specific industrial applications such as automotive, biomedical, electronic and electrical appliances, agriculture. Therefore the control of biodegradation rate is somewhat even more important than the characteristic of biodegradability itself. In this scenario, it is critical to find additives able to modulate the biodegradation rate of biodegradable polymers, in relationship to the expected lifetime. Since the kinetics of hydrolysis strongly depend on the pH of the hydrolyzing medium, in this work some fillers able to control the pH of water when it diffuses inside the polymer were added to PLA. In particular, fumaric acid, a bio- and eco- friendly additive, and magnesium hydroxide, a common antiacid, were used. These fillers were added to the material using a melt-compounding technique, suitable for industrial application. The results obtained are encouraging toward the possibility of effectively controlling the degradation rate.

PLA-Based Nanobiocomposites with Modulated Biodegradation Rate

Iozzino, Valentina
;
De Santis, Felice;Volpe, Valentina;Pantani, Roberto
2018-01-01

Abstract

The disposal of polymeric waste is increasingly becoming an issue of international concern. The use of biodegradable polymers is a possible strategy to face most of the problems related to the disposal of the durable (non-biodegradable) polymers. Among biodegradable polymers, polylactic acid (PLA), obtained from renewable sources, is a very attractive one, due to its relatively good processability, biocompatibility, interesting physical properties. Hydrolysis is the major depolymerization mechanism and the rate-controlling step of PLA biodegradation in compost. The propensity to degradation in the presence of water significantly limits specific industrial applications such as automotive, biomedical, electronic and electrical appliances, agriculture. Therefore the control of biodegradation rate is somewhat even more important than the characteristic of biodegradability itself. In this scenario, it is critical to find additives able to modulate the biodegradation rate of biodegradable polymers, in relationship to the expected lifetime. Since the kinetics of hydrolysis strongly depend on the pH of the hydrolyzing medium, in this work some fillers able to control the pH of water when it diffuses inside the polymer were added to PLA. In particular, fumaric acid, a bio- and eco- friendly additive, and magnesium hydroxide, a common antiacid, were used. These fillers were added to the material using a melt-compounding technique, suitable for industrial application. The results obtained are encouraging toward the possibility of effectively controlling the degradation rate.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4722484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact