We study the homogenization of a general second order elliptic operator in an infinite planar straight strip perforated by small holes along a curve subject to classical boundary conditions on the holes under rather weak assumptions on the non-periodic perforation. We prove the norm resolvent convergence of the perturbed operator to a homogenized one in various operator norms, the estimates for the rate of convergence and the convergence of the spectrum.

Homogenization of elliptic operators in a strip perforated along a curve(Conference Paper)

Durante Tiziana
2019-01-01

Abstract

We study the homogenization of a general second order elliptic operator in an infinite planar straight strip perforated by small holes along a curve subject to classical boundary conditions on the holes under rather weak assumptions on the non-periodic perforation. We prove the norm resolvent convergence of the perturbed operator to a homogenized one in various operator norms, the estimates for the rate of convergence and the convergence of the spectrum.
2019
9780735418547
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4729583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact