This paper focuses on multi-vehicle stochastic assignment to an urban transportation network, where paths likely overlap; route choice behavior is modeled through a Probit model, whose application requires Montecarlo techniques. Main aim is to compare two different pseudo-random generators, Mersenne-Twister and Sobol, and four step size strategies for solution algorithms based on the Method of Successive Averages.

Stochastic Multi-Vehicle Assignment to Urban Transportation Networks

Giulio E Cantarella
;
2020

Abstract

This paper focuses on multi-vehicle stochastic assignment to an urban transportation network, where paths likely overlap; route choice behavior is modeled through a Probit model, whose application requires Montecarlo techniques. Main aim is to compare two different pseudo-random generators, Mersenne-Twister and Sobol, and four step size strategies for solution algorithms based on the Method of Successive Averages.
2020
978-0-12-814353-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4732464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 0
social impact