We define a deterministic growth model which generalizes both the Gompertz and the Korf law in a fractional way. We provide lower bounds for the solution of the corresponding initial value problem and discuss how the introduction of “memory effects” affects the shape of such functions. We also compute maximum and inflection points. © 2020, Springer Nature Switzerland AG.

Some Results on a Growth Model Governed by a Fractional Differential Equation

Antonio Di Crescenzo;Alessandra Meoli
2020

Abstract

We define a deterministic growth model which generalizes both the Gompertz and the Korf law in a fractional way. We provide lower bounds for the solution of the corresponding initial value problem and discuss how the introduction of “memory effects” affects the shape of such functions. We also compute maximum and inflection points. © 2020, Springer Nature Switzerland AG.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4743337
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact