Software engineering projects are now more than ever a community effort. In the recent past, researchers have shown that their success may not only depend on source code quality, but also on other aspects like the balance of distance, culture, global engineering practices, and more. In such a scenario, understanding the characteristics of the community around a project and foresee possible problems may be the key to develop successful systems. In this paper, we focus on this research problem and propose an exploratory study on the relation between community patterns, i.e., recurrent mixes of organizational or social structure types, and smells, i.e., sub-optimal patterns across the organizational structure of a software development community that may be precursors of some sort of social debt. We exploit association rule mining to discover frequent relations between them. Our findings show that different organizational patterns are connected to different forms of socio-technical problems, possibly suggesting that practitioners should put in place specific preventive actions aimed at avoiding the emergence of community smells depending on the organization of the project.

Splicing Community Patterns and Smells: A Preliminary Study

De Stefano M.;Pecorelli F.;Palomba F.;De Lucia A.
2020

Abstract

Software engineering projects are now more than ever a community effort. In the recent past, researchers have shown that their success may not only depend on source code quality, but also on other aspects like the balance of distance, culture, global engineering practices, and more. In such a scenario, understanding the characteristics of the community around a project and foresee possible problems may be the key to develop successful systems. In this paper, we focus on this research problem and propose an exploratory study on the relation between community patterns, i.e., recurrent mixes of organizational or social structure types, and smells, i.e., sub-optimal patterns across the organizational structure of a software development community that may be precursors of some sort of social debt. We exploit association rule mining to discover frequent relations between them. Our findings show that different organizational patterns are connected to different forms of socio-technical problems, possibly suggesting that practitioners should put in place specific preventive actions aimed at avoiding the emergence of community smells depending on the organization of the project.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4756781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact