Approximate computing is emerging as a new paradigm to improve digital circuit performance by relaxing the requirement of performing exact calculations. Approximate adders rely on the idea that for uniformly distributed inputs, long carry-propagation chains are rarely activated. Unfortunately, however, the above assumption on input signal statistics is not always verified; in this paper we focus on the case (often encountered in practical signal processing applications) when the inputs have a Gaussian distribution. We show that for Gaussian inputs the error probability of previously proposed approximate adders approaches 25% for low sigma values, which is much larger than the uniform case. On the basis of this analysis, we propose an approximate adder with a correction circuit that drastically reduces the error rate for Gaussian distributed operand s. In order to investigate the performance of our approach in a real application, simulated results for a simple audio processing system are reported. Implementation results in 65nm technology are also presented.

Approximate adder with output correction for error tolerant applications and Gaussian distributed inputs

NAPOLI, ETTORE;
2016-01-01

Abstract

Approximate computing is emerging as a new paradigm to improve digital circuit performance by relaxing the requirement of performing exact calculations. Approximate adders rely on the idea that for uniformly distributed inputs, long carry-propagation chains are rarely activated. Unfortunately, however, the above assumption on input signal statistics is not always verified; in this paper we focus on the case (often encountered in practical signal processing applications) when the inputs have a Gaussian distribution. We show that for Gaussian inputs the error probability of previously proposed approximate adders approaches 25% for low sigma values, which is much larger than the uniform case. On the basis of this analysis, we propose an approximate adder with a correction circuit that drastically reduces the error rate for Gaussian distributed operand s. In order to investigate the performance of our approach in a real application, simulated results for a simple audio processing system are reported. Implementation results in 65nm technology are also presented.
2016
9781479953400
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4772659
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact