In this paper we compare different approaches to calculating the charge density in the 2DEG layer of AlGaN/GaN HEMTs. The methods used are (i) analytical theory implemented in MATLAB, (ii) finite-element analysis using semiconductor TCAD software that implements only the Poisson and continuity equations, and (iii) 1D software that solves the Poisson and Schrödinger equations self-consistently. By using the 1D PoissonSchrödinger solver, we highlight the consequences of neglecting the Schrödinger equation. We conclude that the TCAD simulator predicts with a reasonable level of accuracy the electron density in the 2DEG layer for both a conventional HEMT structure and one featuring an extra GaN cap layer. In addition, while the sheet charge density is not significantly affected by including Schrödinger, its confinement in the channel is found to be modified.
Modelling 2DEG charges in AlGaN/GaN heterostructures
NAPOLI, ETTORE;
2012-01-01
Abstract
In this paper we compare different approaches to calculating the charge density in the 2DEG layer of AlGaN/GaN HEMTs. The methods used are (i) analytical theory implemented in MATLAB, (ii) finite-element analysis using semiconductor TCAD software that implements only the Poisson and continuity equations, and (iii) 1D software that solves the Poisson and Schrödinger equations self-consistently. By using the 1D PoissonSchrödinger solver, we highlight the consequences of neglecting the Schrödinger equation. We conclude that the TCAD simulator predicts with a reasonable level of accuracy the electron density in the 2DEG layer for both a conventional HEMT structure and one featuring an extra GaN cap layer. In addition, while the sheet charge density is not significantly affected by including Schrödinger, its confinement in the channel is found to be modified.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.