This study proposes a numerical technique based on a hybrid of block-pulse functions and Chelyshkov polynomials to solve fractional delay differential equations. The Galerkin approach transforms the solution of fractional delay differential equations into a system of algebraic equations using the fractional operational matrix of integration for these hybrid functions. The suggested method’s accuracy and efficiency are demonstrated using numerical examples.

A Galerkin Approach for Fractional Delay Differential Equations Using Hybrid Chelyshkov Basis Functions

Conte D.;Farsimadan E.;Moradi L.
;
Palmieri F.;Paternoster B.
2022

Abstract

This study proposes a numerical technique based on a hybrid of block-pulse functions and Chelyshkov polynomials to solve fractional delay differential equations. The Galerkin approach transforms the solution of fractional delay differential equations into a system of algebraic equations using the fractional operational matrix of integration for these hybrid functions. The suggested method’s accuracy and efficiency are demonstrated using numerical examples.
9783031105210
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4804260
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact