This study proposes a numerical technique based on a hybrid of block-pulse functions and Chelyshkov polynomials to solve fractional delay differential equations. The Galerkin approach transforms the solution of fractional delay differential equations into a system of algebraic equations using the fractional operational matrix of integration for these hybrid functions. The suggested method's accuracy and efficiency are demonstrated using numerical examples.

A Galerkin approach for fractional delay differential equations using hybrid Chelyshkov basis functions

Conte, Dajana;Farsimadan, Eslam;Moradi, Leila;Palmieri, Francesco;Paternoster, Beatrice
2022

Abstract

This study proposes a numerical technique based on a hybrid of block-pulse functions and Chelyshkov polynomials to solve fractional delay differential equations. The Galerkin approach transforms the solution of fractional delay differential equations into a system of algebraic equations using the fractional operational matrix of integration for these hybrid functions. The suggested method's accuracy and efficiency are demonstrated using numerical examples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4804263
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact