The increasing development of neural networks for classification and prediction of temporal sequences has opened the way for a new development of mathematical models for soft sensor design. In particular, Long Short-Term Memory (LSTM) networks have greatly improved execution time and reduced error in both single-step and multi-step prediction. In this context, it is therefore possible to improve on the current concept of Instrument Fault Detection and Isolation (IFDI), reducing costs and footprint by not using physical redundancies of sensitive elements but by employing virtual sensors themselves. Therefore, the work aims to develop a soft sensor for rear suspension stroke using an LSTM network. This new approach was trained on over 50000 samples acquired in a real-world environment, and the results were compared with ground truth on a total of over 100000 samples. The results of the analysis showed excellent potential of the method and wide room for improvement in future developments.

An LSTM based soft sensor for rear motorcycle suspension

Carratu' M.;Gallo V.;Pietrosanto A.;Sommella P.
2022-01-01

Abstract

The increasing development of neural networks for classification and prediction of temporal sequences has opened the way for a new development of mathematical models for soft sensor design. In particular, Long Short-Term Memory (LSTM) networks have greatly improved execution time and reduced error in both single-step and multi-step prediction. In this context, it is therefore possible to improve on the current concept of Instrument Fault Detection and Isolation (IFDI), reducing costs and footprint by not using physical redundancies of sensitive elements but by employing virtual sensors themselves. Therefore, the work aims to develop a soft sensor for rear suspension stroke using an LSTM network. This new approach was trained on over 50000 samples acquired in a real-world environment, and the results were compared with ground truth on a total of over 100000 samples. The results of the analysis showed excellent potential of the method and wide room for improvement in future developments.
2022
9781713870241
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4822353
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact