We deal with an optimal control problem for or one class of non-linear elliptic equations with an exponential type of non-linearity. The boundary control is a density of surface traction acting on a part of boundary of an open domain. The aim is to minimize the discrepancy between a given distribution and the current system state. A special family of regularized optimization problems is introduced using a variant of the classical Tikhonov regularization and it is proven that each of these problem is consistent, well-posed, and their solutions allow to attain (in the limit) an optimal solution of the original problem as the parameter of regularization tends to zero. As a consequence, we prove the existence of optimal solutions to the original problem and propose a way for their approximation.

Some Results on Optimal Control Problem for Ill-Posed Nonlinear Elliptic Equations

R. Manzo
2023-01-01

Abstract

We deal with an optimal control problem for or one class of non-linear elliptic equations with an exponential type of non-linearity. The boundary control is a density of surface traction acting on a part of boundary of an open domain. The aim is to minimize the discrepancy between a given distribution and the current system state. A special family of regularized optimization problems is introduced using a variant of the classical Tikhonov regularization and it is proven that each of these problem is consistent, well-posed, and their solutions allow to attain (in the limit) an optimal solution of the original problem as the parameter of regularization tends to zero. As a consequence, we prove the existence of optimal solutions to the original problem and propose a way for their approximation.
2023
978-0-7354-4589-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4838031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact