The thermo-mechanical behavior of miniaturized systems, the characteristic lengths of which is of the order of few nanometers, is strongly influenced by memory, nonlocal, and nonlinear effects [1, 18, 27, 50]. In one-dimensional steady-state situations, in modeling the heat transport along nanowires or thin layers, some of these effects may be incorporated into a size-dependent effective thermal conductivity λeff [2, 43], and a Fourier law (FL)-type equation may still be used with λeff as the thermal conductivity, instead of the bulk value λ. However, in fast perturbations, or under strong heat gradients, or in axial geometries an effective thermal conductivity is not enough to overcome the different problems related to the FL, as for instance, the infinite speed of propagation of thermal disturbances, or some genuinely nonlinear effects in steady states [9, 17, 25, 28, 30, 38]. Therefore, in modeling heat conduction, it is necessary to go beyond FL by introducing more general heat-transport equations, and analyze more general geometries than those considered in Chaps. 3 and 4. In Chap. 2 the nonlinear heat-transport equation (2.16) has been introduced. Here we will analyze some consequences of it.

Weakly nonlocal and nonlinear heat transport

Sellitto A.
Writing – Review & Editing
;
Cimmelli V. A.
Writing – Review & Editing
;
2016-01-01

Abstract

The thermo-mechanical behavior of miniaturized systems, the characteristic lengths of which is of the order of few nanometers, is strongly influenced by memory, nonlocal, and nonlinear effects [1, 18, 27, 50]. In one-dimensional steady-state situations, in modeling the heat transport along nanowires or thin layers, some of these effects may be incorporated into a size-dependent effective thermal conductivity λeff [2, 43], and a Fourier law (FL)-type equation may still be used with λeff as the thermal conductivity, instead of the bulk value λ. However, in fast perturbations, or under strong heat gradients, or in axial geometries an effective thermal conductivity is not enough to overcome the different problems related to the FL, as for instance, the infinite speed of propagation of thermal disturbances, or some genuinely nonlinear effects in steady states [9, 17, 25, 28, 30, 38]. Therefore, in modeling heat conduction, it is necessary to go beyond FL by introducing more general heat-transport equations, and analyze more general geometries than those considered in Chaps. 3 and 4. In Chap. 2 the nonlinear heat-transport equation (2.16) has been introduced. Here we will analyze some consequences of it.
2016
9783319272054
9783319272061
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4872171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact