In this paper we propose the use of a single hidden layer feed forward artificial neural network as a tool to appropriately capture the nonlinear dynamics of the mortality rates modeled by a Lee-Carter type model. The proposed procedure makes it possible to obtain point forecasts and, by using a bootstrap scheme, the forecast distributions, which allow to take into account the uncertainty of models’ predictions. Empirical evidence on Italian data shows a significant improvement contribution of the proposed methodology.

Evaluating Forecast Distributions in Neural Network Lee-Carter Type Model for Mortality Rate

M. La Rocca
Membro del Collaboration Group
;
C. Perna
Membro del Collaboration Group
;
M. Sibillo
Membro del Collaboration Group
2024-01-01

Abstract

In this paper we propose the use of a single hidden layer feed forward artificial neural network as a tool to appropriately capture the nonlinear dynamics of the mortality rates modeled by a Lee-Carter type model. The proposed procedure makes it possible to obtain point forecasts and, by using a bootstrap scheme, the forecast distributions, which allow to take into account the uncertainty of models’ predictions. Empirical evidence on Italian data shows a significant improvement contribution of the proposed methodology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4873951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact