Estimating crowd counting from images is a difficult but important task given the large range of applications such as public safety, traffic monitoring, and urban planning. Occlusions, uneven density, variation in scale and perspective are all challenges in crowd analysis. Thanks to advancements in deep learning and constructing demanding databases, modern computer vision techniques have led to numerous cutting-edge methods that build the abilities needed to properly execute a wide range of scenarios. This article presents a brief description of pioneering methods based on hand-crafted representations, followed by an examination of contemporary approaches based on convolutional neural networks (CNNs) that have achieved significant performance. In addition, the most frequently utilized datasets are addressed, and lastly, promising research routes in this rapidly increasing area are indicated.

A brief overview of recent techniques in crowd counting and density estimation

Pero C.
2022-01-01

Abstract

Estimating crowd counting from images is a difficult but important task given the large range of applications such as public safety, traffic monitoring, and urban planning. Occlusions, uneven density, variation in scale and perspective are all challenges in crowd analysis. Thanks to advancements in deep learning and constructing demanding databases, modern computer vision techniques have led to numerous cutting-edge methods that build the abilities needed to properly execute a wide range of scenarios. This article presents a brief description of pioneering methods based on hand-crafted representations, followed by an examination of contemporary approaches based on convolutional neural networks (CNNs) that have achieved significant performance. In addition, the most frequently utilized datasets are addressed, and lastly, promising research routes in this rapidly increasing area are indicated.
2022
9788770227001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4887371
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact