The economic viability of photovoltaic (PV) devices is strongly dependent upon equipment cost and durability. During their usage, these devices are exposed to several atmospheric degradation agents and thus they need to be protected by coatings and encapsulants. However, even such coatings and encapsulants can degrade over time due to weather conditions, leading to potential efficiency loss and damage of the photovoltaic devices. Nowadays, the following main properties are basically required for solar cells coating materials to ensure PV devices durability: UV, oxygen and water barrier; thermal stability, transparency, anti-reflectance, anti-soiling, flexibility, affordable cost, electrical isolation. Therefore, in order to maintain a high efficiency during their lifetime solar cells require coating materials with several functions that are usually achieved with multilayer coatings, in which one or more layer have a specific functionality, such as gas and moisture barrier, liquid barrier and self-cleaning properties. However, a higher number of layers normally increases the cost and reduces the coating transparency and flexibility. A reduction of the number of layers would lower costs and also help to maintain a high transparency and flexibility. This study was focused to the development of novel flexible and transparent materials able to integrate into a single layer both liquid and gas barrier functionalities by means of simple and effective single step process carried out at room temperature, specifically applied to standard coating bilayers for PV cells. To this aim, a Self Assembly of Monolayers of alkylsilanes and fluoroalkylsilanes was chemisorbed on the silica surface of a PV standard coating bilayers for solar cells such as PET-SiOx and ETFE-SiOx. The so obtained nanocoated films showed high hydrophobic characteristics with average contact angle higher than 130° for the coated PET-SiOx substrate, and a significant improvement of the oxygen barrier properties, reducing the Oxygen Transmission Rate to 1/3 if compared to that of the uncoated film. Accelerate Ageing tests were performed in order to verify the chemical resistance of the nanocoated materials by simulating the degradation effect of both acidic and basic rains, damp heat, UV exposure. The measured contact angle values showed that after an initial slight reduction of the contact angle value, a constant hydrophobic value was maintained for the samples coated with the SAM of fluoroalkylsilanes, even after 1000 hours of very drastic test conditions... [edited by Author]

Flexible Barrier Materials for Improving the Durability of Photovoltaic Devices , 2014 Apr 28., Anno Accademico 2012 - 2013. [10.14273/unisa-328].

Flexible Barrier Materials for Improving the Durability of Photovoltaic Devices

-
2014

Abstract

The economic viability of photovoltaic (PV) devices is strongly dependent upon equipment cost and durability. During their usage, these devices are exposed to several atmospheric degradation agents and thus they need to be protected by coatings and encapsulants. However, even such coatings and encapsulants can degrade over time due to weather conditions, leading to potential efficiency loss and damage of the photovoltaic devices. Nowadays, the following main properties are basically required for solar cells coating materials to ensure PV devices durability: UV, oxygen and water barrier; thermal stability, transparency, anti-reflectance, anti-soiling, flexibility, affordable cost, electrical isolation. Therefore, in order to maintain a high efficiency during their lifetime solar cells require coating materials with several functions that are usually achieved with multilayer coatings, in which one or more layer have a specific functionality, such as gas and moisture barrier, liquid barrier and self-cleaning properties. However, a higher number of layers normally increases the cost and reduces the coating transparency and flexibility. A reduction of the number of layers would lower costs and also help to maintain a high transparency and flexibility. This study was focused to the development of novel flexible and transparent materials able to integrate into a single layer both liquid and gas barrier functionalities by means of simple and effective single step process carried out at room temperature, specifically applied to standard coating bilayers for PV cells. To this aim, a Self Assembly of Monolayers of alkylsilanes and fluoroalkylsilanes was chemisorbed on the silica surface of a PV standard coating bilayers for solar cells such as PET-SiOx and ETFE-SiOx. The so obtained nanocoated films showed high hydrophobic characteristics with average contact angle higher than 130° for the coated PET-SiOx substrate, and a significant improvement of the oxygen barrier properties, reducing the Oxygen Transmission Rate to 1/3 if compared to that of the uncoated film. Accelerate Ageing tests were performed in order to verify the chemical resistance of the nanocoated materials by simulating the degradation effect of both acidic and basic rains, damp heat, UV exposure. The measured contact angle values showed that after an initial slight reduction of the contact angle value, a constant hydrophobic value was maintained for the samples coated with the SAM of fluoroalkylsilanes, even after 1000 hours of very drastic test conditions... [edited by Author]
28-apr-2014
Ingegneria chimica
Solar cells
Coating materials
Barrier films
Ciambelli, Paolo
Incarnato, Loredana
Scarfato, Paola
File in questo prodotto:
File Dimensione Formato  
abstract_in_italiano_G_Rossi.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 947.74 kB
Formato Adobe PDF
947.74 kB Adobe PDF Visualizza/Apri
tesi_G_Rossi.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri
117869790878734660305874286684456879425

non disponibili

Tipologia: Altro materiale allegato
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
82033337826684574778257360303323396534

non disponibili

Tipologia: Altro materiale allegato
Dimensione 947.74 kB
Formato Adobe PDF
947.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4923552
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact