After reviewing the formalism for describing flavor mixing, both in Quantum Mechanics and Quantum Field Theory, some consequences along three different directions are studied. First, it is proposed that flavor mixing can be a viable candidate for spontaneous supersymmetry breaking, due to the nontrivial vacuum structure induced by it. After the statement of the conjecture, an explicit proof in a simple case is given. Second, the properties of flavor states as entangled states both in QM and QFT are studied. By interpreting such states as multipartite mode–entangled states, both the correlation content and the decoherence effects are studied. Third, a possible new interpretation of flavor mixing as induced by an external vector field is proposed, and it is shown how this solves some problems of the usual formalism in connection with Lorentz and Poincar´e violation. Some phenomenological consequences of this picture are pointed out, as well as some intriguing physical interpretations. [edited by Author]

Flavor mixing in quantum field theory and quantum information / Marco Di Mauro , 2011 May 10., Anno Accademico 2009 - 2010.

Flavor mixing in quantum field theory and quantum information

Di Mauro, Marco
2011

Abstract

After reviewing the formalism for describing flavor mixing, both in Quantum Mechanics and Quantum Field Theory, some consequences along three different directions are studied. First, it is proposed that flavor mixing can be a viable candidate for spontaneous supersymmetry breaking, due to the nontrivial vacuum structure induced by it. After the statement of the conjecture, an explicit proof in a simple case is given. Second, the properties of flavor states as entangled states both in QM and QFT are studied. By interpreting such states as multipartite mode–entangled states, both the correlation content and the decoherence effects are studied. Third, a possible new interpretation of flavor mixing as induced by an external vector field is proposed, and it is shown how this solves some problems of the usual formalism in connection with Lorentz and Poincar´e violation. Some phenomenological consequences of this picture are pointed out, as well as some intriguing physical interpretations. [edited by Author]
10-mag-2011
Fisica
Quantum field theory
Entanglement
Neutrino mixing
Neutrino oscillation
Grella, Giuseppe
De Siena, Silvio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4924089
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact