I recenti progressi ottenuti per le reti di comunicazione wireless, permettono la trasmissione multi-frequenza delle informazioni. La teoria delle code rappresenta un valido strumento per studiare come le performance di tali sistemi di comunicazione possano essere migliorate, e individuare opportune soluzioni. In termini di teoria delle code, modellare un sistema di trasmissione multi-frequenza significa considerare una determinata disciplina: un gruppo di richieste da parte di utenti possono essere processate simultaneamente in parallelo, e il processo dell’intero gruppo risulta completato se tutte le richieste appartenenti a tale gruppo sono espletate. Al fine di modellare tale tipologia di sistemi di telecomunicazione, si possono definire particolari assunzioni sugli arrivi, determinati da processi di arrivo Markoviani, e sul tempo di servizio e lunghezza del periodo di ammissione, regolati da distribuzioni di tipo a fasi. Pertanto, in tale lavoro di tesi sono stati considerati sistemi a coda di tipo MAP/PH/1, con e senza retrial per considerare tutti i possibili comportamenti degli utenti. Il principale obiettivo dell’attivita` di ricerca presentata in tale lavoro `e introdurre nuove strategie di ammissione per i sistemi descritti, al fine di fornire un maggior contributo alle attuali analisi sulle performance, in particolare relativamente alla scelta della lunghezza ottimale del periodo di ammissione e la dimensione ottimale dei gruppi. Le dinamiche di tali sistemi sono descritte da catene di Markov multidimensionali. `E stata ricavata la condizione di ergodicit`a per tali catene di Markov, `e stata calcolata la distribuzione delle probabilita` stazionarie degli stati, e sono state ottenute le formule per le misure dei principali parametri prestazionali del sistema. I principali vantaggi delle discipline di servizio proposte sono state illustrate numericamente. [a cura dell'Autore]
MAP/PH/1 systems with group service: performance analysis under different admission strategies / Arianna Brugno , 2017 May 04., Anno Accademico 2015 - 2016. [10.14273/unisa-1023].
MAP/PH/1 systems with group service: performance analysis under different admission strategies
Brugno, Arianna
2017
Abstract
I recenti progressi ottenuti per le reti di comunicazione wireless, permettono la trasmissione multi-frequenza delle informazioni. La teoria delle code rappresenta un valido strumento per studiare come le performance di tali sistemi di comunicazione possano essere migliorate, e individuare opportune soluzioni. In termini di teoria delle code, modellare un sistema di trasmissione multi-frequenza significa considerare una determinata disciplina: un gruppo di richieste da parte di utenti possono essere processate simultaneamente in parallelo, e il processo dell’intero gruppo risulta completato se tutte le richieste appartenenti a tale gruppo sono espletate. Al fine di modellare tale tipologia di sistemi di telecomunicazione, si possono definire particolari assunzioni sugli arrivi, determinati da processi di arrivo Markoviani, e sul tempo di servizio e lunghezza del periodo di ammissione, regolati da distribuzioni di tipo a fasi. Pertanto, in tale lavoro di tesi sono stati considerati sistemi a coda di tipo MAP/PH/1, con e senza retrial per considerare tutti i possibili comportamenti degli utenti. Il principale obiettivo dell’attivita` di ricerca presentata in tale lavoro `e introdurre nuove strategie di ammissione per i sistemi descritti, al fine di fornire un maggior contributo alle attuali analisi sulle performance, in particolare relativamente alla scelta della lunghezza ottimale del periodo di ammissione e la dimensione ottimale dei gruppi. Le dinamiche di tali sistemi sono descritte da catene di Markov multidimensionali. `E stata ricavata la condizione di ergodicit`a per tali catene di Markov, `e stata calcolata la distribuzione delle probabilita` stazionarie degli stati, e sono state ottenute le formule per le misure dei principali parametri prestazionali del sistema. I principali vantaggi delle discipline di servizio proposte sono state illustrate numericamente. [a cura dell'Autore]I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


