È ormai noto come l'inquinamento atmosferico sia una delle principali cause dei problemi sulla salute umana e dei cambiamenti climatici. La crisi globale legata alla pandemia COVID-19 ha portato alla ribalta questo tema. L'importanza della qualità dell'aria è stata riscoperta e annoverata tra i principali effetti positivi del lockdown. La diffusione di sensori elettrochimici a basso costo, unita alla diffusione delle tecnologie dell’Internet of Things (IoT), consentirà nel prossimo futuro la nascita di una generazione di reti di monitoraggio della qualità dell'aria, caratterizzate dall'integrazione di analizzatori di livello normativo e di dispositivi multisensoriali sia elettrochimici che per il particolato intelligenti. I primi forniranno una spina dorsale di misurazioni sparse, altamente affidabili e di alta qualità ma a costi significativi, mentre i dispositivi multisensoriali intelligenti (a basso costo) forniranno misurazioni ad alta risoluzione e possibilmente ridondanti, a costi accessibili ma con precisione e accuratezza ridotte. Di conseguenza, saranno fornite mappe dell'inquinamento ad alta risoluzione, che costituiranno uno strumento di supporto informativo avanzato per i decisori istituzionali. Tuttavia, questo cambiamento di paradigma nel monitoraggio della qualità dell'aria è attualmente ostacolato da una serie di problemi riguardanti i sensori a basso costo ossia, l'elevata varianza di fabbricazione e la natura dinamica e non stazionaria dell'ambiente di lavoro in cui questi dispositivi devono operare; ma la preoccupazione principale è legata alla qualità dei dati di misurazione. La calibrazione in campo, basata su modelli statistici o più in generale su modelli di machine learning, sembra l'unico metodo praticabile e fattibile per garantire l'accuratezza e la precisione a breve termine di questi sistemi. La calibrazione in campo allo stesso tempo viene anche criticata per la sua robustezza a lungo termine poiché il sistema si troverà ad operare successivamente in una diversa composizione dell'ambiente e dell'inquinamento nella sua vita operativa. Tale procedura però consente di esporre, in modo rapido ed economico, i sensori a una varietà di condizioni (incontrollabili) simili a quelle che si incontreranno durante la vita operativa, a differenza della calibrazione in laboratorio che richiederebbe tempi e sforzi umani significativi per ottenere una variabilità simile in ambienti controllati. Il raggiungimento dei tanto attesi obiettivi di qualità dei dati, potrebbe rappresentare un punto di svolta per la rapida diffusione su larga scala di 5 questa tecnologia, soprattutto nelle applicazioni per le cosiddette “città intelligenti”. La presente ricerca di dottorato si è concentrata su questo obiettivo: la qualità del dato, inteso come la misurazione rilasciata dal nodo sensoriale. Nella prima parte è stata affrontata la valutazione delle tecniche di apprendimento automatico per la calibrazione dei sistemi di monitoraggio della qualità dell'aria a basso costo, confrontando i modelli della regressione lineare multivariata e delle reti neurali. Lo scopo di questa analisi è stato quello di capire se una tecnica più semplice (come la regressione lineare multivariata) sia ugualmente in grado di realizzare prestazioni accettabili in termini di qualità dei dati rispetto a tecniche avanzate, ma molto più complesse come le reti neurali. Per questo tipo di indagine sono state realizzate una campagna sperimentale di co-locazione a medio termine e una di citizen science. Entrambe hanno dimostrato l'efficacia dell'approccio multivariato, sia in applicazioni fisse che mobili. [a cura dell'Autore]
Advanced Procedures for On-Field Calibration of Low-Cost Air Quality Monitoring Systems / Gerardo D'elia , 2023 Jul 24., Anno Accademico 2021 - 2022. [10.14273/unisa-5436].
Advanced Procedures for On-Field Calibration of Low-Cost Air Quality Monitoring Systems
-
2023
Abstract
È ormai noto come l'inquinamento atmosferico sia una delle principali cause dei problemi sulla salute umana e dei cambiamenti climatici. La crisi globale legata alla pandemia COVID-19 ha portato alla ribalta questo tema. L'importanza della qualità dell'aria è stata riscoperta e annoverata tra i principali effetti positivi del lockdown. La diffusione di sensori elettrochimici a basso costo, unita alla diffusione delle tecnologie dell’Internet of Things (IoT), consentirà nel prossimo futuro la nascita di una generazione di reti di monitoraggio della qualità dell'aria, caratterizzate dall'integrazione di analizzatori di livello normativo e di dispositivi multisensoriali sia elettrochimici che per il particolato intelligenti. I primi forniranno una spina dorsale di misurazioni sparse, altamente affidabili e di alta qualità ma a costi significativi, mentre i dispositivi multisensoriali intelligenti (a basso costo) forniranno misurazioni ad alta risoluzione e possibilmente ridondanti, a costi accessibili ma con precisione e accuratezza ridotte. Di conseguenza, saranno fornite mappe dell'inquinamento ad alta risoluzione, che costituiranno uno strumento di supporto informativo avanzato per i decisori istituzionali. Tuttavia, questo cambiamento di paradigma nel monitoraggio della qualità dell'aria è attualmente ostacolato da una serie di problemi riguardanti i sensori a basso costo ossia, l'elevata varianza di fabbricazione e la natura dinamica e non stazionaria dell'ambiente di lavoro in cui questi dispositivi devono operare; ma la preoccupazione principale è legata alla qualità dei dati di misurazione. La calibrazione in campo, basata su modelli statistici o più in generale su modelli di machine learning, sembra l'unico metodo praticabile e fattibile per garantire l'accuratezza e la precisione a breve termine di questi sistemi. La calibrazione in campo allo stesso tempo viene anche criticata per la sua robustezza a lungo termine poiché il sistema si troverà ad operare successivamente in una diversa composizione dell'ambiente e dell'inquinamento nella sua vita operativa. Tale procedura però consente di esporre, in modo rapido ed economico, i sensori a una varietà di condizioni (incontrollabili) simili a quelle che si incontreranno durante la vita operativa, a differenza della calibrazione in laboratorio che richiederebbe tempi e sforzi umani significativi per ottenere una variabilità simile in ambienti controllati. Il raggiungimento dei tanto attesi obiettivi di qualità dei dati, potrebbe rappresentare un punto di svolta per la rapida diffusione su larga scala di 5 questa tecnologia, soprattutto nelle applicazioni per le cosiddette “città intelligenti”. La presente ricerca di dottorato si è concentrata su questo obiettivo: la qualità del dato, inteso come la misurazione rilasciata dal nodo sensoriale. Nella prima parte è stata affrontata la valutazione delle tecniche di apprendimento automatico per la calibrazione dei sistemi di monitoraggio della qualità dell'aria a basso costo, confrontando i modelli della regressione lineare multivariata e delle reti neurali. Lo scopo di questa analisi è stato quello di capire se una tecnica più semplice (come la regressione lineare multivariata) sia ugualmente in grado di realizzare prestazioni accettabili in termini di qualità dei dati rispetto a tecniche avanzate, ma molto più complesse come le reti neurali. Per questo tipo di indagine sono state realizzate una campagna sperimentale di co-locazione a medio termine e una di citizen science. Entrambe hanno dimostrato l'efficacia dell'approccio multivariato, sia in applicazioni fisse che mobili. [a cura dell'Autore]I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


