We analyze the linear stability properties of mixed collocation Runge–Kutta–Nyström (RKN) methods for the second order Ordinary Differential Equations y"=f(x,y). In particular we consider the influence of the collocation nodes on the stability region, analyzing in detail the case of frequency and step length dependent RKN methods obtained through mixed collocation which are based on Gauss, Radau and Lobatto nodes. Keywords: Numerical methods for ODEs; Collocation methods; Runge–Kutta–Nyström methods; Stability analysis

Stability regions of one step mixed collocation methods for y"=f(x,y)

PATERNOSTER, Beatrice
2005

Abstract

We analyze the linear stability properties of mixed collocation Runge–Kutta–Nyström (RKN) methods for the second order Ordinary Differential Equations y"=f(x,y). In particular we consider the influence of the collocation nodes on the stability region, analyzing in detail the case of frequency and step length dependent RKN methods obtained through mixed collocation which are based on Gauss, Radau and Lobatto nodes. Keywords: Numerical methods for ODEs; Collocation methods; Runge–Kutta–Nyström methods; Stability analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1000187
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact