Landslides of the flow type involving granular geo-materials frequently result in casualties and damage to property because of the long travel distance and the high velocities that these may attain. This was true for the events that took place in Campania Region (Southern Italy) in May 1998, involving pyroclastic soils originating from explosive activities of the Somma-Vesuvius volcano. Although these phenomena have frequently affected various areas of the Campania region over the last few centuries, there were no useful geological and geotechnical references available in the aftermath of the May 1998 events. For this reason Salerno University, which was involved in the scientific management of the emergency, addressed the issue of acquiring data on the geological, geomorphological and hydrogeological features of the slopes where the landslides had taken place. The information acquired made it possible to set up a slope evolution model that is able to interpret, from a geological point of view, past and more recent landslides that had occurred in the same area. As preliminary geotechnical analyses had already validated the above model, more detailed investigations were performed both on the pore pressure regimen of the covers still in place as well as on the physical and mechanical properties of pyroclastic soils, in saturated and unsaturated conditions. The present paper begins by discussing the data acquired during the first phase of the studies and then goes on to illustrate the laboratory results so far obtained with the aid of approximate procedures. These help advance our knowledge of pyroclastic soils within a reasonable time frame, thus improving landslide triggering analysis.

Geotechnical characterization of pyroclastic soils involved in huge flowslides

BILOTTA, Eduardo;CASCINI, Leonardo;FORESTA, Vito;SORBINO, Giuseppe
2005

Abstract

Landslides of the flow type involving granular geo-materials frequently result in casualties and damage to property because of the long travel distance and the high velocities that these may attain. This was true for the events that took place in Campania Region (Southern Italy) in May 1998, involving pyroclastic soils originating from explosive activities of the Somma-Vesuvius volcano. Although these phenomena have frequently affected various areas of the Campania region over the last few centuries, there were no useful geological and geotechnical references available in the aftermath of the May 1998 events. For this reason Salerno University, which was involved in the scientific management of the emergency, addressed the issue of acquiring data on the geological, geomorphological and hydrogeological features of the slopes where the landslides had taken place. The information acquired made it possible to set up a slope evolution model that is able to interpret, from a geological point of view, past and more recent landslides that had occurred in the same area. As preliminary geotechnical analyses had already validated the above model, more detailed investigations were performed both on the pore pressure regimen of the covers still in place as well as on the physical and mechanical properties of pyroclastic soils, in saturated and unsaturated conditions. The present paper begins by discussing the data acquired during the first phase of the studies and then goes on to illustrate the laboratory results so far obtained with the aid of approximate procedures. These help advance our knowledge of pyroclastic soils within a reasonable time frame, thus improving landslide triggering analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1061527
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact