The paper introduces a systematic procedure to coarse-grain atomistic models of the largest family of synthetic polymers into a mesoscopic model that is able to keep detailed information about chain stereosequences. The mesoscopic model consists of sequences of superatoms centered on methylene carbons of two different types according to the kind of diad (m or r) they belong to. The corresponding force-field contains three different bonds, six angle and three nonbonded terms. Recently developed analytical potentials, based on sums of Gaussians for bond and angle terms of the mesoscale force field have been used. For the nonbonded part, numerical potentials optimized by pressure-corrected iterative Boltzmann inversion have been used. As test case we coarse-grained an atomistic all-atom model of atactic polystyrene. The proposed mesoscale model has been successfully tested against structural and dynamical properties for different chain lengths and opens the possibility of relaxing melts of high molecular weight vinyl polymers.

Mapping Atomistic Simulations to Mesoscopic Models: A Systematic Coarse-Graining Procedure for Vinyl Polymer Chains

MILANO, Giuseppe
2005-01-01

Abstract

The paper introduces a systematic procedure to coarse-grain atomistic models of the largest family of synthetic polymers into a mesoscopic model that is able to keep detailed information about chain stereosequences. The mesoscopic model consists of sequences of superatoms centered on methylene carbons of two different types according to the kind of diad (m or r) they belong to. The corresponding force-field contains three different bonds, six angle and three nonbonded terms. Recently developed analytical potentials, based on sums of Gaussians for bond and angle terms of the mesoscale force field have been used. For the nonbonded part, numerical potentials optimized by pressure-corrected iterative Boltzmann inversion have been used. As test case we coarse-grained an atomistic all-atom model of atactic polystyrene. The proposed mesoscale model has been successfully tested against structural and dynamical properties for different chain lengths and opens the possibility of relaxing melts of high molecular weight vinyl polymers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1061855
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 225
social impact