The following two results are proven. (i) Let G be a finitely generated torsion-free linear group. If every torsion-free section of G is an R-group, then G is soluble of finite rank. Conversely, if G has finite rank, then it has a subgroup of finite index, in which every torsion-free section is an R-group. (ii) Let G be a finitely generated torsion-free soluble group. If in every torsion-free section of G the normalizer of each isolated subgroup is isolated, then G has finite rank. Conversely, if G has finite rank, then it has a subgroup K of finite index such that in every torsion-free section of K the normalizer of each isolated subgroup is isolated
Torsion-free groups with rank restricting properties
DELIZIA, Costantino
;NICOTERA, Chiara;
2005
Abstract
The following two results are proven. (i) Let G be a finitely generated torsion-free linear group. If every torsion-free section of G is an R-group, then G is soluble of finite rank. Conversely, if G has finite rank, then it has a subgroup of finite index, in which every torsion-free section is an R-group. (ii) Let G be a finitely generated torsion-free soluble group. If in every torsion-free section of G the normalizer of each isolated subgroup is isolated, then G has finite rank. Conversely, if G has finite rank, then it has a subgroup K of finite index such that in every torsion-free section of K the normalizer of each isolated subgroup is isolatedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.