The following two results are proven. (i) Let G be a finitely generated torsion-free linear group. If every torsion-free section of G is an R-group, then G is soluble of finite rank. Conversely, if G has finite rank, then it has a subgroup of finite index, in which every torsion-free section is an R-group. (ii) Let G be a finitely generated torsion-free soluble group. If in every torsion-free section of G the normalizer of each isolated subgroup is isolated, then G has finite rank. Conversely, if G has finite rank, then it has a subgroup K of finite index such that in every torsion-free section of K the normalizer of each isolated subgroup is isolated
Titolo: | Torsion-free groups with rank restricting properties | |
Autori: | ||
Data di pubblicazione: | 2005 | |
Rivista: | ||
Abstract: | The following two results are proven. (i) Let G be a finitely generated torsion-free linear group. If every torsion-free section of G is an R-group, then G is soluble of finite rank. Conversely, if G has finite rank, then it has a subgroup of finite index, in which every torsion-free section is an R-group. (ii) Let G be a finitely generated torsion-free soluble group. If in every torsion-free section of G the normalizer of each isolated subgroup is isolated, then G has finite rank. Conversely, if G has finite rank, then it has a subgroup K of finite index such that in every torsion-free section of K the normalizer of each isolated subgroup is isolated | |
Handle: | http://hdl.handle.net/11386/1061970 | |
Appare nelle tipologie: | 1.1.2 Articolo su rivista con ISSN |