Using the variational approximation and direct simulations in real and imaginary time, we find stable two-dimensional (2D) and 3D solitons in the self-attractive Gross-Pitaevskii equation (GPE) with a potential which is uniform in one direction szd and periodic in the others (however, the quasi-1D potentials cannot stabilize 3D solitons). The family of solitons includes single- and multiple-peaked ones. The results apply to Bose-Einstein condensates (BEC’s) in optical lattices (OL’s) and to spatial or spatiotemporal solitons in layered optical media. This is the first prediction of mobile 2D and 3D solitons in BEC’s, as they keep mobility along z. Head-on collisions of in-phase solitons lead to their fusion into a collapsing pulse. Slow collisions between two multiple-peaked solitons whose main peaks are separated by an intermediate channel end up with their fusion into one single-peaked soliton in the middle channel, approx 1/3 of the original number of atoms being shed off. Stable localized states in the self-repulsive GPE with the low-dimensional OL combined with a parabolic trap are found too. Two such pulses in one channel perform recurrent elastic collisions, periodically featuring sharp interference patterns in the strong-overlap state.

Multidimensional solitons in a low-dimensional periodic potential

SALERNO, Mario
2004-01-01

Abstract

Using the variational approximation and direct simulations in real and imaginary time, we find stable two-dimensional (2D) and 3D solitons in the self-attractive Gross-Pitaevskii equation (GPE) with a potential which is uniform in one direction szd and periodic in the others (however, the quasi-1D potentials cannot stabilize 3D solitons). The family of solitons includes single- and multiple-peaked ones. The results apply to Bose-Einstein condensates (BEC’s) in optical lattices (OL’s) and to spatial or spatiotemporal solitons in layered optical media. This is the first prediction of mobile 2D and 3D solitons in BEC’s, as they keep mobility along z. Head-on collisions of in-phase solitons lead to their fusion into a collapsing pulse. Slow collisions between two multiple-peaked solitons whose main peaks are separated by an intermediate channel end up with their fusion into one single-peaked soliton in the middle channel, approx 1/3 of the original number of atoms being shed off. Stable localized states in the self-repulsive GPE with the low-dimensional OL combined with a parabolic trap are found too. Two such pulses in one channel perform recurrent elastic collisions, periodically featuring sharp interference patterns in the strong-overlap state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1063830
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 179
  • ???jsp.display-item.citation.isi??? 171
social impact