In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear Schrödinger equation with a periodic potential. We show that the nonlinear Schrödinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in nonlinear photonic crystals.
Titolo: | Wannier functions analysis of the nonlinear Schroedingerequation with a periodic potential | |
Autori: | ||
Data di pubblicazione: | 2002 | |
Rivista: | ||
Abstract: | In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear Schrödinger equation with a periodic potential. We show that the nonlinear Schrödinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in nonlinear photonic crystals. | |
Handle: | http://hdl.handle.net/11386/1063891 | |
Appare nelle tipologie: | 1.1.2 Articolo su rivista con ISSN |