We have investigated the antiferromagnetic phase of two-dimensional (2D), three-dimensional (3D), and extended Hubbard models on a bipartite cubic lattice by means of the composite operator method within a two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as regards the antiferromagnetic and paramagnetic phases, has been drawn. We first reported, within a pole approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg, and Heisenberg transitions. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase. This latter is restricted to a very small region near half-filling, and has, in contrast to what has been found by similar approaches, a finite critical Coulomb interaction as a lower bound at half-filling. Finally, it is worth noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic correlations, and another coming from the Mott-Hubbard mechanism. © 2001 The American Physical Society.

Antiferromagnetic phase in the Hubbard model by means of the composite operator method

AVELLA, Adolfo;MANCINI, Ferdinando;
2001

Abstract

We have investigated the antiferromagnetic phase of two-dimensional (2D), three-dimensional (3D), and extended Hubbard models on a bipartite cubic lattice by means of the composite operator method within a two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as regards the antiferromagnetic and paramagnetic phases, has been drawn. We first reported, within a pole approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg, and Heisenberg transitions. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase. This latter is restricted to a very small region near half-filling, and has, in contrast to what has been found by similar approaches, a finite critical Coulomb interaction as a lower bound at half-filling. Finally, it is worth noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic correlations, and another coming from the Mott-Hubbard mechanism. © 2001 The American Physical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1064208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 31
social impact