The fermionic and bosonic sectors of the 2-site Hubbard model have been exactly solved by means of the equation of motion and Green's function formalism. The exact solution of the t-J model has been also reported to investigate the low-energy dynamics. We have successfully searched for the exact eigenoperators, and the corresponding eigenenergies, having in mind the possibility to use them as an operatorial basis on the lattice. Many local, single-particle, thermodynamical and response properties have been studied as functions of the external parameters and compared between the two models and with some numerical and exact results. It has been shown that the 2-site Hubbard model already contains the most relevant energy scales of the Hubbard model: the local Coulomb interaction U and the spin-exchange one J = 4t 2/U. As a consequence of this, for some relevant properties (kinetic energy, double occupancy, energy, specific heat and entropy) and as regards the metal-insulator transition issue, it has resulted possible to almost exactly mime the behavior of larger systems, sometimes using a higher temperature to get a comparable level spacing. The 2-site models have been also used as toy models to test the efficiency of the Green's function formalism for composite operators. The capability to reproduce the exact solutions, obtained by the exact diagonalization technique, gives a firm ground to the approximate treatments based on this formalism. © 2003 Springer-Verlag Berlin/Heidelberg.

The 2-site Hubbard and t-J models

AVELLA, Adolfo;MANCINI, Ferdinando;SAIKAWA, Taiichiro
2003-01-01

Abstract

The fermionic and bosonic sectors of the 2-site Hubbard model have been exactly solved by means of the equation of motion and Green's function formalism. The exact solution of the t-J model has been also reported to investigate the low-energy dynamics. We have successfully searched for the exact eigenoperators, and the corresponding eigenenergies, having in mind the possibility to use them as an operatorial basis on the lattice. Many local, single-particle, thermodynamical and response properties have been studied as functions of the external parameters and compared between the two models and with some numerical and exact results. It has been shown that the 2-site Hubbard model already contains the most relevant energy scales of the Hubbard model: the local Coulomb interaction U and the spin-exchange one J = 4t 2/U. As a consequence of this, for some relevant properties (kinetic energy, double occupancy, energy, specific heat and entropy) and as regards the metal-insulator transition issue, it has resulted possible to almost exactly mime the behavior of larger systems, sometimes using a higher temperature to get a comparable level spacing. The 2-site models have been also used as toy models to test the efficiency of the Green's function formalism for composite operators. The capability to reproduce the exact solutions, obtained by the exact diagonalization technique, gives a firm ground to the approximate treatments based on this formalism. © 2003 Springer-Verlag Berlin/Heidelberg.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1064225
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact