Environmental catalysis has continuously grown in importance over the last 2 decades not only in terms of the worldwide catalyst market, but also as a driver of advances in the whole area of catalysis. The development of innovative “environmental” catalysts is also the crucial factor towards the objective of developing a new sustainable industrial chemistry. In the last decade, considerable expansion of the traditional area of environmental catalysis (mainly NOx removal from stationary and mobile sources, and VOC conversion) has also occurred. New areas include: (i) catalytic technologies for liquid or solid waste reduction or purification; (ii) use of catalysts in energy-efficient catalytic technologies and processes; (iii) reduction of the environmental impact in the use or disposal of catalysts; (iv) new eco-compatible refinery, chemical or non-chemical catalytic processes; (v) catalysis for greenhouse gas control; (vi) use of catalysts for user-friendly technologies and reduction of indoor pollution; (vii) catalytic processes for sustainable chemistry; (viii) reduction of the environmental impact of transport. Therefore, a significant change has occurred in the last decade in the areas of interest regarding environmental catalysts and in the modality of approaching the research. This review, based on but not limited to the workshop “Environmental Catalysis: A Step Forward” (Maiori, Italy, May 2001), introduces the proceedings of this workshop reported in this issue of Catalysis Today and has the objective of providing an overview to the topic and setting the basis for a step forward in environmental catalysis research.

Environmental Catalysis. Trends and Outlooks

CIAMBELLI, Paolo;RUSSO, Paola
2002

Abstract

Environmental catalysis has continuously grown in importance over the last 2 decades not only in terms of the worldwide catalyst market, but also as a driver of advances in the whole area of catalysis. The development of innovative “environmental” catalysts is also the crucial factor towards the objective of developing a new sustainable industrial chemistry. In the last decade, considerable expansion of the traditional area of environmental catalysis (mainly NOx removal from stationary and mobile sources, and VOC conversion) has also occurred. New areas include: (i) catalytic technologies for liquid or solid waste reduction or purification; (ii) use of catalysts in energy-efficient catalytic technologies and processes; (iii) reduction of the environmental impact in the use or disposal of catalysts; (iv) new eco-compatible refinery, chemical or non-chemical catalytic processes; (v) catalysis for greenhouse gas control; (vi) use of catalysts for user-friendly technologies and reduction of indoor pollution; (vii) catalytic processes for sustainable chemistry; (viii) reduction of the environmental impact of transport. Therefore, a significant change has occurred in the last decade in the areas of interest regarding environmental catalysts and in the modality of approaching the research. This review, based on but not limited to the workshop “Environmental Catalysis: A Step Forward” (Maiori, Italy, May 2001), introduces the proceedings of this workshop reported in this issue of Catalysis Today and has the objective of providing an overview to the topic and setting the basis for a step forward in environmental catalysis research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1064449
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact