In the neighborhood of Sgr A*, several stars ( S2, S12, S14, S1, S8, and S13) enjoy an accurate determination of their orbital parameters. General relativity predicts that the central black hole acts as a gravitational lens on these stars, generating a secondary image and two infinite series of relativistic images. For each of these six stars, we calculate the light curves for the secondary and the first two relativistic images, in the Schwarzschild black hole hypothesis, throughout their orbital periods. The curves are peaked around the periapse epoch, but two subpeaks may arise in nearly edge-on orbits, when the source is behind or in front of Sgr A*. We show that for most of these stars the secondary image should be observable during its brightness peak. In particular, S14 is the best candidate, since its secondary image reaches K = 23: 3 with an angular separation of 0.125 mas from the apparent horizon of the central black hole. The detection of such images by future instruments could represent the first observation of gravitational lensing beyond the weak-field approximation.
Gravitational lensing of stars in the central arcsecond of our galaxy
BOZZA, Valerio;MANCINI, Luigi
2005-01-01
Abstract
In the neighborhood of Sgr A*, several stars ( S2, S12, S14, S1, S8, and S13) enjoy an accurate determination of their orbital parameters. General relativity predicts that the central black hole acts as a gravitational lens on these stars, generating a secondary image and two infinite series of relativistic images. For each of these six stars, we calculate the light curves for the secondary and the first two relativistic images, in the Schwarzschild black hole hypothesis, throughout their orbital periods. The curves are peaked around the periapse epoch, but two subpeaks may arise in nearly edge-on orbits, when the source is behind or in front of Sgr A*. We show that for most of these stars the secondary image should be observable during its brightness peak. In particular, S14 is the best candidate, since its secondary image reaches K = 23: 3 with an angular separation of 0.125 mas from the apparent horizon of the central black hole. The detection of such images by future instruments could represent the first observation of gravitational lensing beyond the weak-field approximation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.