A membership broadcast scheme is a method by which a dealer broadcasts a secret identity among a set of users, in such a way that only a single user is sure that he is the intended recipient. Anonymous membership broadcast schemes have several applications, such as anonymous delegation, cheating prevention, etc. In a w-anonymous membership broadcast scheme any coalition of at most w users, which does not include the user chosen by the dealer, has no information about the identity of the chosen user. Wang and Pieprzyk proposed a combinatorial approach to 1-anonymous membership broadcast schemes. In particular, they proposed a 1-anonymous membership broadcast scheme offering a logarithmic complexity for both communication and storage. However, their result is non-constructive. In this paper, we consider w-anonymous membership broadcast schemes. First, we propose a formal model to describe such schemes and show lower bounds on the communication and randomness complexities of the schemes. Afterwards, we show that w-anonymous membership broadcast schemes can be constructed starting from .w . 1.-wise independent families of permutations. The communication and storage complexities of our schemes are logarithmic in the number of users.
Anonymous Membership Broadcast Schemes
DE SANTIS, Alfredo;MASUCCI, Barbara
2004
Abstract
A membership broadcast scheme is a method by which a dealer broadcasts a secret identity among a set of users, in such a way that only a single user is sure that he is the intended recipient. Anonymous membership broadcast schemes have several applications, such as anonymous delegation, cheating prevention, etc. In a w-anonymous membership broadcast scheme any coalition of at most w users, which does not include the user chosen by the dealer, has no information about the identity of the chosen user. Wang and Pieprzyk proposed a combinatorial approach to 1-anonymous membership broadcast schemes. In particular, they proposed a 1-anonymous membership broadcast scheme offering a logarithmic complexity for both communication and storage. However, their result is non-constructive. In this paper, we consider w-anonymous membership broadcast schemes. First, we propose a formal model to describe such schemes and show lower bounds on the communication and randomness complexities of the schemes. Afterwards, we show that w-anonymous membership broadcast schemes can be constructed starting from .w . 1.-wise independent families of permutations. The communication and storage complexities of our schemes are logarithmic in the number of users.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.