A one-dimensional model is presented to predict debris-flow runouts. The model is based on shallow water type assumptions. The fluid is assumed to be homogeneous and the original bed of the flow domain to be unerodible. The fluid is characterized by a rheology of Bingham type. A numerical tool able to cope with the nature of debris flows has been worked out. It represents an extension of a second order accurate and conservative method of Godunov type. Special care has been devoted to the influence of the source terms and of the geometrical representation of the natural cross sections, which play a fundamental role. The application concerns a monitored event in the Dolomites in Italy, where field analyses allowed a characterization of the behavior of solid-liquid mixture as a yield stress material. The comparison between numerical simulations and field observations highlights the impossibility of representing all phases of the flow with constant values of the rheological parameters. Nevertheless the results show that it is possible to separately represent the phase of the flow in the upstream reach and the phase of the deposition in the alluvial fan, with a good agreement with field observations.

Numerical simulation of real debris-flows events

PAPA, Maria Nicolina
2000

Abstract

A one-dimensional model is presented to predict debris-flow runouts. The model is based on shallow water type assumptions. The fluid is assumed to be homogeneous and the original bed of the flow domain to be unerodible. The fluid is characterized by a rheology of Bingham type. A numerical tool able to cope with the nature of debris flows has been worked out. It represents an extension of a second order accurate and conservative method of Godunov type. Special care has been devoted to the influence of the source terms and of the geometrical representation of the natural cross sections, which play a fundamental role. The application concerns a monitored event in the Dolomites in Italy, where field analyses allowed a characterization of the behavior of solid-liquid mixture as a yield stress material. The comparison between numerical simulations and field observations highlights the impossibility of representing all phases of the flow with constant values of the rheological parameters. Nevertheless the results show that it is possible to separately represent the phase of the flow in the upstream reach and the phase of the deposition in the alluvial fan, with a good agreement with field observations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1068353
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 51
social impact