In this paper we analyze, in the context of a Lavrentieff phenomenon, the process of homogenization for Dirichlet problems of the following type m_h^p (Ω,β)=inf⁡{∫_Ω f(hx,Du)dx+∫_Ω〖βudx:u∈W^(1,p) (Ω)(u∈C^1 (Ω)ifp=' c1' ),u=0 on ∂Ω,|Du(x)|≤φ(hx)" for a.e.x in Ω} where Ω is a bounded open subset of Rn with Lipschitz boundary, β ∈ L1(Ω), p ∈ ]n,+∞] or p = ‘c1’ and under suitable hypothesis on f and φ. This problem has been considered in [20] under different hypothesis on f and φ.

Some new results on a Lavrentieff phenomenon for problems of homogenization with constraints on the gradient

D'APICE, Ciro;DURANTE, Tiziana;
1999

Abstract

In this paper we analyze, in the context of a Lavrentieff phenomenon, the process of homogenization for Dirichlet problems of the following type m_h^p (Ω,β)=inf⁡{∫_Ω f(hx,Du)dx+∫_Ω〖βudx:u∈W^(1,p) (Ω)(u∈C^1 (Ω)ifp=' c1' ),u=0 on ∂Ω,|Du(x)|≤φ(hx)" for a.e.x in Ω} where Ω is a bounded open subset of Rn with Lipschitz boundary, β ∈ L1(Ω), p ∈ ]n,+∞] or p = ‘c1’ and under suitable hypothesis on f and φ. This problem has been considered in [20] under different hypothesis on f and φ.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1072116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact