Background—The protease-activated receptor-2 (PAR-2) is expressed by vascular endothelial cells and upregulated by lipopolysaccharide (LPS) in vitro. PAR-2 is activated by a tethered ligand created after proteolytic cleavage by trypsin or experimentally by a synthetic agonist peptide (PAR-2AP) corresponding to the new amino terminus of the tethered ligand.Methods and Results—Intravenous administration of PAR-2AP (0.1, 0.3, and 1 mg/kg) to rats caused a dose-dependent hypotension. A scrambled peptide was without effect. A specific trypsin inhibitor, biotin–SGKR-chloromethylketone, inhibited trypsin-induced hypotension but not that stimulated by PAR-2AP. In animals treated with LPS 20 hours earlier, we found an increased sensitivity to trypsin and PAR-2AP in the hypotensive response. In particular, PAR-2AP caused hypotension at a low concentration of 30 ng/kg. Moreover, PAR-2 was immunolocalized to endothelial and smooth muscle cells in aorta and jugular vein in LPS-treated rats, and increased levels of PAR-2 mRNA were shown by reverse transcription–polymerase chain reaction analysis.Conclusions—Our findings suggest that PAR-2 is important in the regulation of blood pressure in vivo. A functional upregulation of PAR-2 by LPS was demonstrated by the activity of concentrations of PAR-2AP that were inactive in normal animals. We conclude that PAR-2 may play an important role in the hypotension associated with endotoxic shock and may represent a new therapeutic target.

Protease-activated receptor-2 involvement in hypotension in normal and endotoxemic rats in vivo.

PINTO, Aldo;
1999-01-01

Abstract

Background—The protease-activated receptor-2 (PAR-2) is expressed by vascular endothelial cells and upregulated by lipopolysaccharide (LPS) in vitro. PAR-2 is activated by a tethered ligand created after proteolytic cleavage by trypsin or experimentally by a synthetic agonist peptide (PAR-2AP) corresponding to the new amino terminus of the tethered ligand.Methods and Results—Intravenous administration of PAR-2AP (0.1, 0.3, and 1 mg/kg) to rats caused a dose-dependent hypotension. A scrambled peptide was without effect. A specific trypsin inhibitor, biotin–SGKR-chloromethylketone, inhibited trypsin-induced hypotension but not that stimulated by PAR-2AP. In animals treated with LPS 20 hours earlier, we found an increased sensitivity to trypsin and PAR-2AP in the hypotensive response. In particular, PAR-2AP caused hypotension at a low concentration of 30 ng/kg. Moreover, PAR-2 was immunolocalized to endothelial and smooth muscle cells in aorta and jugular vein in LPS-treated rats, and increased levels of PAR-2 mRNA were shown by reverse transcription–polymerase chain reaction analysis.Conclusions—Our findings suggest that PAR-2 is important in the regulation of blood pressure in vivo. A functional upregulation of PAR-2 by LPS was demonstrated by the activity of concentrations of PAR-2AP that were inactive in normal animals. We conclude that PAR-2 may play an important role in the hypotension associated with endotoxic shock and may represent a new therapeutic target.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1129020
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 92
social impact