The functional F(u) = integral(B) f(x, Du)dx is considered, where B is the unit ball in R-n, u varies in the set of the locally Lipschitz functions on R-n, and f belongs to a family of integrands containing, as model case, the following one f : (x, z) is an element of Rn x Rn --> \ < z, x > \/\x\(n) + \z\(p), 1 < p < n. The computation of the relaxed functional of F is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.

Lavrentieff Phenomenon and non standard growth conditions

D'APICE, Ciro;
2001-01-01

Abstract

The functional F(u) = integral(B) f(x, Du)dx is considered, where B is the unit ball in R-n, u varies in the set of the locally Lipschitz functions on R-n, and f belongs to a family of integrands containing, as model case, the following one f : (x, z) is an element of Rn x Rn --> \ < z, x > \/\x\(n) + \z\(p), 1 < p < n. The computation of the relaxed functional of F is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1212057
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact