A stochastic model of solid tumor growth based on deterministic Gompertz law is presented. Tumor cells evolution is described by a one-dimensional diffusion process limited by two absorbing boundaries representing healing threshold and patient death (carrying capacity), respectively. Via a numerical approach the first exit time problem is analysed for the process inside the region restricted by the boundaries. The proposed model is also implemented to simulate the effects of a time-dependent therapy. Finally, some numerical results are obtained for the specific case of a parathyroid tumor.
A Stochastic model in Tumor Growth
ALBANO, GIUSEPPINA;GIORNO, Virginia
2006
Abstract
A stochastic model of solid tumor growth based on deterministic Gompertz law is presented. Tumor cells evolution is described by a one-dimensional diffusion process limited by two absorbing boundaries representing healing threshold and patient death (carrying capacity), respectively. Via a numerical approach the first exit time problem is analysed for the process inside the region restricted by the boundaries. The proposed model is also implemented to simulate the effects of a time-dependent therapy. Finally, some numerical results are obtained for the specific case of a parathyroid tumor.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.