A wide set of crystallization isotherms and the subsequent melting behavior of isotactic polypropylene (i-PP) were investigated using differential scanning calorimetry and nanocalorimetry with a very high rate in the cooling step. The latter technique offers, indeed, the distinct possibility to perform isothermal crystallization experiments at any temperature in between the glass transition and melting, as the test temperature can be reached at a cooling rate of 1000 K/s, thus, preventing crystallization during the cooling step. Isothermal tests after such fast cooling were performed at intervals of 5 K within the temperature range −15 to 90 °C, and a local exothermal overheating was observed. In particular, for each isotherm, the observed peaks were fitted using the Kolmogorov−Johnson−Mehl−Avrami model. The plot of the crystallization kinetics constant as function of temperature gives clear evidence of two kinetic processes. The subsequent heating scan performed starting from −15 °C showed an exothermic event, between 0 and 30 °C, due to the mesophase cold crystallization, for isotherms at a temperature lower than 20 °C.

Isothermal Nanocalorimetry of Isotactic Polypropylene

DE SANTIS, FELICE;TITOMANLIO, Giuseppe;
2007-01-01

Abstract

A wide set of crystallization isotherms and the subsequent melting behavior of isotactic polypropylene (i-PP) were investigated using differential scanning calorimetry and nanocalorimetry with a very high rate in the cooling step. The latter technique offers, indeed, the distinct possibility to perform isothermal crystallization experiments at any temperature in between the glass transition and melting, as the test temperature can be reached at a cooling rate of 1000 K/s, thus, preventing crystallization during the cooling step. Isothermal tests after such fast cooling were performed at intervals of 5 K within the temperature range −15 to 90 °C, and a local exothermal overheating was observed. In particular, for each isotherm, the observed peaks were fitted using the Kolmogorov−Johnson−Mehl−Avrami model. The plot of the crystallization kinetics constant as function of temperature gives clear evidence of two kinetic processes. The subsequent heating scan performed starting from −15 °C showed an exothermic event, between 0 and 30 °C, due to the mesophase cold crystallization, for isotherms at a temperature lower than 20 °C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1659948
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact