We make a further advance concerning the maximum principle for second-order elliptic operators. We investigate in particular a geometric condition, firstly considered by Berestycki–Nirenberg–Varadhan, that seems to be natural in view of the application of the boundary weak Harnack inequality, on which our argument is based. Setting it free from some technical assumptions, apparently needed in earlier papers, we significantly enlarge the class of unbounded domains where the maximum principle holds, compatibly with the first-order term.

A Note on the Maximum Principle for Complete Second-Order Elliptic Operators in General Domains

VITOLO, Antonio
2007

Abstract

We make a further advance concerning the maximum principle for second-order elliptic operators. We investigate in particular a geometric condition, firstly considered by Berestycki–Nirenberg–Varadhan, that seems to be natural in view of the application of the boundary weak Harnack inequality, on which our argument is based. Setting it free from some technical assumptions, apparently needed in earlier papers, we significantly enlarge the class of unbounded domains where the maximum principle holds, compatibly with the first-order term.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1660240
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact